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The study of the interaction of sub- and supersonic jets with secondary super- and 
subsonic flows in channels and in tubes is of great practical interest, particularly in 
connection with the processes of turbulent mixing and interaction as a consequence of pres- 
sure. The most complete mathematical model of such flows is the one based on the Navier- 
Stokes equations, enhanced with equations describing turbulent transfer. However, the nu- 
merical solution of the Navier-Stokes equations requires the expenditure of considerable 
amounts of computer time [i] and raises certain methodological difficulties in the area 
of high Reynolds numbers [2]. The complexity of the situation is compounded in an investi- 
gation of turbulent flows. This is a result, on the one hand, of the need to resort to 
empirical information to close the existing theories of elasticity [3], and on the other 
hand, by the continued increasing complexity of the system of differential equations describ- 
ing the averaged turbulent flows and their microstructure [4]. Therefore, in practical 
calculations we use simplified approaches that are based on the numerical solution of regu- 
lar finite-difference methods of parabolized Navier-Stokes equations [2, 5]. Since the 
area of effective utilization of parabolized Navier-Stokes equations is limited primarily 
to supersonic flows, in order to calculate the injection of subsonic jets into a secondary 
supersonic flow, boundary-layer equations have found extensive applications. These are 
equations of the parabolic type and they make possible solutions by standard finite-differ- 
ence methods for both super- and subsonic flows. Most effective are the boundary-layer 
equations used to calculate sub- and supersonic jets in a secondary supersonic flow in tubes 
and in channels [6, 7], the distribution of pressure in which is found by proceeding from 
the condition of the conservation of mass. Such an approach allows us to find a good ap- 
proximate solution of the problem for the case in which the wave processes in a nonviscous 
supersonic flow can be ignored (for example, in the case of low nontheoretical regimes of 
supersonic jet discharge or in the discharge of a subsonic jet of great intensity, when 
the pressure at the outlet from the nozzle is close to the pressure in the secondary flow)o 

In the injection of sub- and supersonic jets into a secondary super- and subsonic flow 
within a channel or a tube, the greater portion of which is occupied by the supersonic flow, 
complete solution of the problem requires detailed computation of the interaction between 
the pressure of the injected jet and the outer flow. In this case, the model using the 
boundary-layer equations to describe the flow in a subsonic jet or flow and the equations 
of nonviscous flow (the Euler equations) for a supersonic external flow or for the injected 
jet proved to be most effective. The compiled portion of this model includes relationships 
which describe the viscous-nonviscous interaction and the solutions of the differential 
equations which arise out of asymptotic joining. The methodology for the solution of such 
problems was developed in [8-10]. In the present study, on the basis of this methodology, 
we investigate the influence of wave processes in a nonviscous flow on the characteristics 
of flow in the viscous region on interaction of a sub- and supersonic jet with secondary 
super- and subsonic flows in a channel and in a tube~ 

i. We examined the two-dimensional flow in a channel or in a tube on the interaction 
of a sub- or supersonic injected jet with an external super- or subsonic flow. The gas 
in the flow and in the jet is assumed to be uniform in composition and calorically and ther- 
mally perfect. The deceleration temperatures within these flows may generally be quite 
different. The diagram for the discharge of a subsonic jet into a secondary supersonic 
flow in a channel is shown in Fig. i. The calculation of the flow is accomplished within 
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Fig. i 

the framework of the model of viscous-nonviscous interaction, employed earlier in the study 
of jet flows in problems related to external aerogasdynamics [8-10]. According to this 
model, the flow is conditionally broken down into a nonviscous flow which streamlines an 
effective displacement body, and into a viscous flow in the zone in which the jet mixes with 
the secondary flow, described in approximation of the boundary layer. The characteristics 
of the nonviscous flow in the inlet section, corresponding to the cross section of the nozzle 
outlet, are assumed to be known, while the values of the gasdynamic parameters downstream 
are found by numerical integration of the Euler equations. 

In contrast to classical Prandtl boundary layer theory, in which the distribution of 
pressure along the viscous-flow region is equal to the local pressure of the nonviscous 
flow, in the calculation of jet and separation flows within the scope of the viscous-non- 
viscous interaction model it is necessary, even in first approximation, to account for the 
influence of the viscosity-induced pressure gradient on the characteristics of the nonviscous 
flow. A consistent value for the pressure gradient is determined through combined calcula- 
tion of the viscous and nonviscous flows by means of additional equations, i.e., the condi- 
tions of viscous-nonviscous interaction [8-10]. These conditions form to make up a system 
of ordinary differential equations for the pressure in the viscous region and at the boun- 
daries of an effective displacement body. According to [8, 9], in a cylindrical coordinate 
system for two-dimensional flows, these are written in the form 
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v t i s  t h e  t u r b u l e n t  v i s c o s i t y ;  6 ( x )  and 6 * ( x )  a r e  t h e  c o n d i t i o n a l  b o u n d a r y  o f  t h e  v i s c o u s  
region and the boundary of the effective displacement body; j = 0 corresponds to plane flow 
while j = i corresponds to axisymmetric flow. The subscript e denotes values of the param- 
eters in the nonviscous flow. The remaining notation is standard in the literature. The 
presence in (I.i) of the integral calculated on the basis of the parameters of the nonvis- 
cous flow makes it possible, in approximate formulation, to account for the influence of 
the vorticity of the nonviscous flow on the interaction flow. 

Solution of the problem of sub- and supersonic injection into a secondary super- and 
subsonic flow in a channel in an approximate formulation within the scope of the viscous- 
nonviscous interaction model reduces to the joint integration of the Euler equations, the 
boundary-layer equations, and conditions (1.1)-(1.3). With supersonic flow the Euier equa- 
tions in the nonviscous region are of a hyperbolic type, where the longitudinal x coordinate 
functions as the regular coordinate, and the boundary-layer equations are of the parabolic 
type. Consequently, in order to calculate these flows we can formulate the Cauchy problem. 
However, the correctness of this problem with respect to the initial data depends on the 
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structure of the flow in the viscous flow region. Since in the case of flows with reverse- 
circulation zones the Cauchy problem is incorrect for the boundary-layer equations, in the 
present study we have investigated only flows with a straightforward longitudinal velocity 
profile. 

In the problems of viscous-nonviscous interaction, with the joining of solutions in 
corresponding subregions, there arises a mechanism for transmission of information upstream. 
We are dealing here with the fact that the extreme nature of the mathematical problem with 
an earlier unknown boundary (the surface of the effective displacement body) may impart 
"elliptical" properties to the solution. In this formulation this mechanism appears through 
the presence of a singular saddle-type point for system of conditions (1.1)-(1.3), while 
the singular solution of the system of given equations corresponds to the flow that is 
realizable from the physical standpoint. On the strength of the continuous relationship 
between the solutions of system (1.1)-(1.3) and the initial data, the unknown value of the 
static pressure at the inlet cross section corresponds to a singular solution. 

For each integral curve (including a singular curve) in the regions of viscous and 
nonviscous flows it becomes necessary to integrate the equations of gasdynamics and of the 
boundary layer. The efficiency with which the standard schemes are utilized in problems 
of viscous interaction depends significantly on the means used to join the solutions. In 
contrast to the method of global iterations, requiring repeated sequential calculation of 
the field of flow in the corresponding regions, the utilization of system (1.1)-(1.3) allows 
us to construct a standard computational algorithm whose essence lies in the following. 
In the joint integration of the Euler equations, of the boundary layer, and of conditions 
(1.1)-(1.3), the derivative contained within these conditions is approximated with second- 
order accuracy by unilateral differences involving the use of pressure values at two points 
adjacent to the boundary and at a point that is part of the boundary. Since in the explicit 
finite-difference scheme the values of the gasdynamic parameters at points not lying at 
the boundary in the Xn+ I section can be found from the values of the parameters at the x n 
section and are independent of the conditions prevailing at the boundary surface, then on transi- 
tion from x n to Xn+ l the parameters at the internal points of the nonviscous flow are found 
independently of the conditions of viscous-nonviscous interaction. The 6" coordinate of 
the displacement body and the magnitude of the pressure Pe on that body in the Xn+ l section 
are determined in first approximation from (1.1)-(1.3) for values of coefficients calcu- 
lated from the parameters of the flow in the viscous region at the x n section. The subse- 
quent refinement of Pe and 6* in the Xn+ I section occurs in the iteration process and is 
associated with the nonlinearity of the boundary-layer equations. In addition to the indi- 
cated iterations, it is necessary to carry out global iterations in'order to choose the 
pressures in the initial section, the appropriate choice for which will make it possible 
to pass through the singular point of conditions (1.1)-(1.3) and thus to construct a unique 
solution. 

2. Let us examine the problem of calculating the flow in the near wake behind a body 
on discharge of a subsonic jet into a secondary unbounded supersonic flow. The parameters 
for the nonviscous flow were determined through integration of the gasdynamic equations 
in accordance with the finite-difference MacCormack scheme [ii] on the basis of a developed 
complex of programs [12]. As in [i0], the boundary-layer equations were integrated in ac- 
cordance with the implicit finite-difference scheme in normalized Mises variables. We made 
use of algebraic and differential models of turbulence. We chose the Prandtl model as the 
algebraic model [13] 

vt = • Uminl5 (2.1) 

(the proportionality factor K = 0.27 at the initial segment of the jet and it was equal 
to 0.22 in the main segment). For the differential model of turbulence we took the one- 
parameter model for turbulent viscosity, which has gained widespread acceptance [6, 7]: 

, puT-z- z + pv--~- = [3,o/(M)pv t + ~vt u "b-7 + v - - ~  + 
( 2 . 2 )  
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where 80, $, and Prvt are empirical constants (80 = 0.2, $ = 2/3, Prvt = 0.5), and for the 

function f(M) we use the approximation 

II when M ~ ~, / 
L ~/M when ]%[> i.  

The distribution of static pressure along the axis of the plane symmetrical wake is 
shown in Fig. 2. Curves i and 2 correspond to the differential (2.2) and algebraic (2.1) 
models of turbulence, curve 3 corresponds to the flow with a constant turbulent viscosity 
v t = vt/(hu=) = 0.01, and curve 4 corresponds to calculation of the laminar wake at a char- 
acteristic Reynolds number of Re = p~u=h/p~ = i00 and an exponential relationship between 
viscosity and temperature, with an exponent ~ = 0.5. Here h is the width of the bottom 
outlet and u~ represents the velocity of the unperturbed outer flow. As we can see from 
a comparison of the curves, the turbulence models affect the magnitude of the pressure at 
the inlet section and weakly affect the distribution of pressure downstream beyond the block- 
age section. The results presented below have therefore been found by means of the alge- 
braic model of turbulence, since it is the simplest. 

The distinguishing factor of the problem of subsonic injection into a secondary 
supersonic flow in a channel or a tube is the formulation of the boundary conditions for 
nonpenetration into the theoretical region bounded by the surface AA. This corresponds 
to the problem of the discharge of a block of plane identical subsonic jets into a second- 
ary uniform supersonic flow, when both the surface AA and the plane BB serve as the sym- 
metry plane of the flow. The results obtained for this case can be interpreted as results 
from the calculation of the discharge of a subsonic jet into a secondary supersonic flow 
in a channel or tube, where friction at the walls is not taken into consideration. As demon- 
strated in [7], this assumption has little effect on pressure. 

The distribution of the static pressure along the axis of the channel for various values 
of the relative height of the bottom recess in the case of plane flow is shown in Fig. 3 
[curves 1-3: h = 0.i, 0.334, and 0.5 (h = h/H)]. The calculations have been carried out 
for the following determining parameters: the Mach number of the unperturbed outer flow 
is M= = 2, the relative injection intensity for the subsonic jet is 7~V = PVUV/p~u~ = 0.05, 
and the deceleration temperatures in the outer flow and in the jet are identical. The dashed 
lines in Fig. 3 show the pressure distributions at the channel wall (curves 4-6, respective- 
ly) and the boundary of the effective displacement body (7). From the pressure peaks on 
the characteristic flow lines we can judge the position and intensity of the compression 
shocks and the rarefaction waves formed in the nonviscous flow field. Comparison of the 
calculation results shows the extent to which the presence of a wall exerts significant 
influence on the wave structure of the flow. The larger h, the more rapidly does the struc- 
ture of the nonviscous flow affect the parameters of flow in the viscous region. 

Given the earlier determining parameters, Fig. 4 shows the theoretical distribution 
of the static pressure in the viscous region in the channel for h = 0.5 at a rather great 
distance downstream. We track the wavelike periodic behavior of pressure, with an amplitude 
attenuating downstream. 
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The results of the numerical calculation of the static-pressure distribution in the 
viscous region along the axis of the tube for two values of the relative nozzle radius h = 
0.I, 0.334 and qv = 0.i are shown in Fig. 5. The axisymmetric fiow pattern is, on the whole, 
analogous to a plane pattern. However, there are certain differences. First of all, the 
pressure gradients in the case of axisymmetric flow are greater in magnitude than in the 
case of plane flow, and second, the maximum static pressure in the viscous flow region is 
greater than the static pressure in the nonviscous unperturbed flow. 

Figure 6 shows the results of calculations which reflect the influence of injection 
intensity. The numerals 1-3 identify the static-pressure distribution curves along the 
jet axis with q = 0.05, 0.i, and 0.15, respectively, h = 0.334, and the previous conditions. 
The distribution of the static pressure along the wall of the tube when q = 0.05 and 0.15 
is shown by curves 4 and 5. We see the degeneration of the wavelike character of the pres- 
sure distribution as h increases. This is associated with the increase in the bottom pres- 
sure Pg = Pe(0) and, as a consequence, with the reduction in the intensity of the rarefaction 
waves at the edge of the nozzle, engendering the wavelike nature of the downstream changes 
in pressure. 

Let us examine the problem of the interaction of a supersonic jet with a secondary 
subsonic flow in a channel. As in the previous problem, the parameters in the subsonic 
region are obtained by proceeding from the boundary-layer equations, and the injected super- 
sonic jet is calculated by the finite-difference method with the aid of Euler equations. 
The pressure distribution in the subsonic flow is derived from the conditions of viscous-non- 
viscous interaction (1.1)-(1.3). The flow parameters in the underexpanded jet are determined 
through specification of the static pressure PV, the deceleration temperature TV ~ the Mach 
number M V at the nozzle outlet, and in the external uniform subsonic flow through specifica- 
tion of the specific flow rate q~ = p~u~ and the deceleration temperature T~ ~ The unknown 
value of the static pressure P~ in the external subsonic flow is found during the process 
of solving the problem from the conditions of passage through the singular point of the 
system of equations of viscous-nonviscous interaction. Figure 7 shows the static-pressure 
distribution along the channel wall (as before, the effect of friction is neglected) for 
M V = 2, q~ = p~u~/plru V = 0.05, TV ~ = T= ~ Curve 1 corresponds to calculation at h = 0.5, 
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while curve 2 corresponds to calculation at h = 0.25. The shape of the pressure curves 
is analogous to the corresponding distributions shown in Fig. 4 for the problems of inter- 
action between a subsonic jet and a secondary supersonic flow. We observe the same wavelike 
distribution of pressure with an amplitude attenuating downstream. With an increase in 
the relative height of the nozzle, the oscillating amplitudes of the static pressure increases, 
while the period of oscillations diminishes, which is in agreement with the wave structure 
of the flow in the nonviscous underexpanded adjacent jet. The points in Fig. 7 identify 
the positions of the critical cross sections in the "throat" of the viscous region. Beyond 
these sections the viscous flow on the average becomes supersonic. 
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